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Robot manipulations with diverse manifold

• Force, torques Euclidean 

• Orientations (          , Sphere     )

• Robot Poses (          )
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Protein Backbone Generation with SE(3) dynamics

• Starting from 𝑁 amino residues.

• Rotation            and Translation   ;          group action multiple times.

• Leading to naturalistic protein structure.
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Geometric Deep learning

• Example: Convolutional Neural Networks (CNNs)

• Convolution: Translation Invariance

• Max pooling: Scale Invariance

• This ‘Inductive Bias’ drastically reduce curse of dimensionality
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Geometry-aware Black-box optimization (example)

• Consider below black-box optimization problem.

• How to force 𝑥 satisfy equality constraints?

• IDEA:

1. Optimize on 𝑥 ∈ 𝑅!; then project 𝑥 to ||𝑥|| = 1

2. Optimize on 𝑥 ∈ 𝑅!; with constraint penalty 

3. Optimize on 𝒙 ∈ 𝑺𝐝#𝟏 ∶ Sphere

Find 𝑥 max
%∈'!

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ( = 1

Original Euclidean space 𝑥, 𝑦, 𝑧 → Spherical Coordinates 𝜙, 𝜃 ; 𝜌 = 1
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Geometry-aware Black-box optimization (example)

• Now, original constrained optimization problem

• Transformed to unconstrained optimization problem.

• Here, the point on the sphere 𝑆!#) is not following Euclidean

• Hint: Distance between two points on Earth?

It is not an Euclidean Distance 𝒙 − 𝒚 𝟐

To deal with these non-Euclidean geometry, define Riemannian Manifold

Find 𝑥 max
%∈'!

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ( = 1

Find 𝑥 max
%∈+!"#

𝑓(𝑥)
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Riemannian Manifold

• Informal: Smooth manifold (topological) that does not follows Euclidean geometry
But follows Euclidean when look closer to certain point 𝒑 ∈ 𝑴. (Locally Resembles)

• EX): Earth 
Distance between New York and Seoul (long distance): 2𝜋𝑟 × ,

-./$

Distance between two people (short distance): calculate with ruler; ||𝑥 − 𝑦||
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Riemannian Manifold

Formal	description:

• 𝑀 be a smooth manifold 𝐶0, (No edges, spikes)

• For each point 𝑝 ∈ 𝑀, there is an associated vector space 𝑇1𝑀 called tangent space of 𝑀 at 𝑝.

• We define metric 𝑔 to ‘measure’ in 𝑀. 

• We write                          on the tangent space. 

• The norm is defined as:      

• Smooth manifold 𝑀 + Riemannian metric 𝑔 = Riemannian Manifold (𝑀, 𝑔)

Preliminaries
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Riemannian Manifold

Geodesics:	Distance	between	New	York	and	Seoul

• Smooth manifold     + Riemannian metric 𝑔 = Riemannian Manifold (𝑀, 𝑔)

• Now we can calculate length of the curve defined on 𝑀 as:

• Where 𝛾: 𝑎, 𝑏 → 𝑀 continuously differentiable curve 
with boundary condition: 𝛾 𝑎 = 𝑝, 𝛾 𝑏 = 𝑞

• By taking infimum of this leads to distance called geodesic distance

And corresponding curve    is called Geodesics.

𝛾
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Riemannian Manifold

Mapping	function	between	Manifold	and	Tangent	Space:

• Exponential map: 
From tangent space to 𝑀

• Logarithmic map:
From 𝑀 to tangent space

Where 𝑈 is locally defined near 𝑝

Preliminaries
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Riemannian Manifold

Plus	and	Minus	operator	in	Riemannian	manifold:

• We can define ⊕ and ⊖ operator as:

Preliminaries
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Riemannian Manifold

Examples	of	Geodesics,	Mapping	function	on	Sphere,	SPD	manifold

Preliminaries
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Riemannian Manifold

Euclidean space is	a	special	case	of	a	Riemannian	Manifold

• For each point in           , associated tangent space:

Preliminaries

Manifold

Metric:

Inner Product:

Norm

Geodesic distance:



Prior works

Industrial & Systems Engineering 15

Geometry Aware Bayesian Optimization (GaBO)

oind 𝑥∗ = argmax%∈3 𝑓 𝑥
within 𝑅 rounds, 𝐵 batch of queries

oind 𝑥∗ = argmax%∈4 𝑓 𝑥
within 𝑅 rounds, 𝐵 batch of queries
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Geometry Aware Bayesian Optimization (GaBO)

1. Train Gaussian Process (GP) Based surrogate models for 
estimating candidate posterior

𝑓 𝑥 ∼ 𝐺𝑃(𝜇 𝑥 , 𝐾 𝑥, 𝑥! )

2. Use acquisition function (EI, UCB) to select next promising point
𝑥"#$ = argmax% 𝛼(𝑥)

3. Evaluate expensive objective function at selected point 
𝑦"#$ = 𝑓(𝑥"#$)

4. Update GP model with new observation data

Repeat 1~4 until convergence or budget exhausted

Vanilla	Bayesian	optimization	framework:
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Geometry Aware Bayesian Optimization (GaBO)

1. Train Gaussian Process (GP) Based surrogate models for 
estimating candidate posterior

𝑓 𝑥 ∼ 𝐺𝑃(𝜇 𝑥 , 𝐾 𝑥, 𝑥! )

2. Use acquisition function (EI, UCB) to select next promising point
𝑥"#$ = argmax% 𝛼(𝑥)

3. Evaluate expensive objective function at selected point 
𝑦"#$ = 𝑓(𝑥"#$)

4. Update GP model with new observation data

Repeat until convergence or budget exhausted

Adding	Inductive	Bias	for	Geometry:

From	distance	based	kernels	to	geodesics.

Conjugate	Gradient	on	Riemannian	manifolds
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Geometry Aware Bayesian Optimization (GaBO)

• Much better than Euclidean BO with constraint penalty.

• Revealing that Geometry-aware (inductive bias) helpful for the optimization.

• Still suffer from high-dimensional settings (BO’s fundamental problem)

Results:

Prior works
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Posterior Inference with Diffusion Models for High-dimensional Black-box optimization

Target Function 
𝑓 𝐱

UCB score
𝜇! 𝐱 + 𝛾 ⋅ 𝜎! 𝐱

Prior Distribution
𝑝" 𝐱

Posterior Distribution

𝑝" 𝐱 ⋅ exp 𝛽 ⋅ 𝜇! 𝐱 + 𝛾 ⋅ 𝜎! 𝐱

• In high-dimensional space, directly searching argmax𝐱 𝜇2 𝐱 + 𝛾 ⋅ 𝜎2 𝐱 may lead to suboptimal results.

• Sampling from the posterior distribution prevents overemphasized exploration of boundary.

Motivating figure of our methods

Prior works
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Posterior Inference with Diffusion Models for High-dimensional Black-box optimization

Dataset

𝒟#

Proxy
𝜇! 𝐱 , 𝜎! 𝐱 𝑝$ 𝐱 ∝ 𝑝" 𝐱 ⋅ exp 𝛽 ⋅ 𝜇! 𝐱 + 𝛾 ⋅ 𝜎! 𝐱

Posterior InferenceDiffusion model
𝑝" 𝐱

𝑝$ 𝐱

Local Search Filtering

Phase 1. Training Models Evaluate SamplesPhase 2. Sampling Candidates

𝑦

Reweighting

𝑦 𝑦

Moving 
Dataset

𝐱%, ⋯ , 𝐱& 𝑦

• Train diffusion prior 𝑝7(𝑥), and network ensembles 𝜇2 𝐱 , 𝜎2 𝐱 .

• Fine-tune diffusion models with Relative Trajectory Balance (RTB) loss. 

• Sampling candidates, evaluate, and repeat.
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Posterior Inference with Diffusion Models for High-dimensional Black-box optimization

• Did well on high-dimensional settings

• Much more efficient, compared to BO based methods.
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Geometry-aware Posterior Inference for High dimensional black-box optimization

Problem	is	given	as:
Find 𝑥∗ = 𝑎𝑟𝑔max

%∈4
𝑓(𝑥)

• For	R	rounds	B	batch	of	Query

• Where function is black-box. 

• Manifold 𝑀 is	known	and	assumed	to	have	high	dimensionality.

We	want	to	sample	from:

1. Expressive Prior 2. Surrogate function

3. Posterior Sampling method
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Geometry-aware Posterior Inference for High dimensional black-box optimization

Expressive Prior 𝑝,(𝑥)

Possible	choices:

• Riemannian	Diffusion	Models

• Riemannian	Score-Based	Generative	Modeling

• Riemannian	Flow-matching

Surrogate function 𝑟5 𝑥 :𝑀 → 𝑅
Possible	choices:

• Geometry	Aware	CNN

Posterior Sampling method

Possible	choices:

• Riemannian	Classifier	Guidance

• Twisted	Diffusion	Sampler

• Fine-tuning	method?	(Not	developed	yet)
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Geometry-aware Posterior Inference for High dimensional black-box optimization

1. Train Prior 𝑝,(𝑥)

2. Train Surrogate function 𝑟5 𝑥 :𝑀 → 𝑅

3. Posterior Sampling method

4. Sample from posterior 𝑥6 67)8 ∼ 𝑝, 𝑥 exp 𝑟5(𝑥)

5. Query samples to the function 𝑦6 67)8 = 𝑓(𝑥6) 67)
8

Repeat 1~5 iteratively

← Riemannian	Score-Based	Generative	Modeling

← Geometry	Aware	CNN

← Twisted	Diffusion	Sampler

• Task:

Synthetic	function	with	𝑆! , 𝑆𝑃𝐷! domain.

Real	world	tasks:	Robot	manipulation	task.	

Algorithm:
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Protein Structure Design with Riemannian Posterior Inference

• If	we	can	develop	Riemannian	Fine-tuning	method

Task:	Protein	design	with	high	binding	affinity.

• Design	protein	structure	iteratively	optimizing	arbitrary	function

Protein Sequence

Protein Structure
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Geometric Deep Learning + Generative models

• Designing	best	way	to	incorporate	inductive	bias	in	Generative	models.

• Application	of	above	methods	to	downstream	tasks	(Robot	manipulation	&	Material/Scientific	Design)
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• Posterior	Inference	with	Diffusion	Models	for	High-dimensional	Black-box	Optimization	(ours)

• SE(3)	diffusion	model	with	application	to	protein	backbone	generation

• Fast	protein	backbone	generation	with	SE(3)	flow	matching

• Protein	Design	with	Guided	Discrete	Diffusion

• Flow	Matching	on	General	Geometries

• Riemannian	Diffusion	Models

• Riemannian	Score-Based	Generative	Modelling

• Bayesian	Optimization	Meets	Riemannian	Manifolds	in	Robot	Learning

• High-Dimensional	Bayesian	Optimization	via	Nested	Riemannian	Manifolds

Generative	Protein	Design

Riemannian	Generative	Models

Geometry Aware BO
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