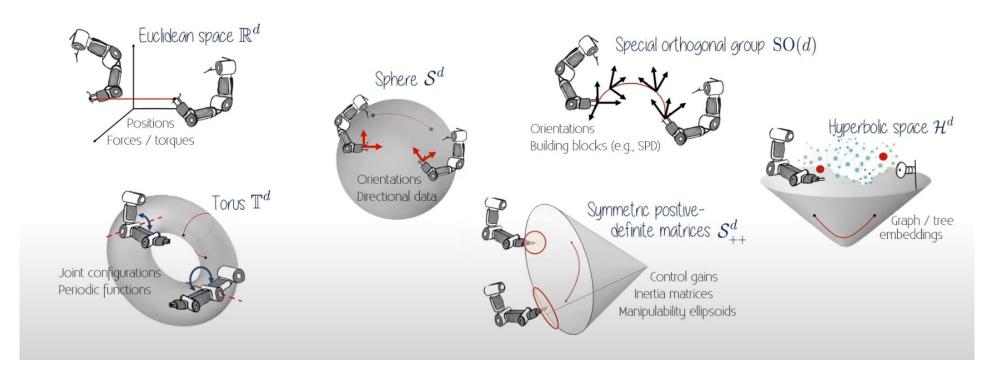
# Geometry-aware Posterior Inference for High dimensional black-box optimization

Kiyoung Om

# **Table of contents**

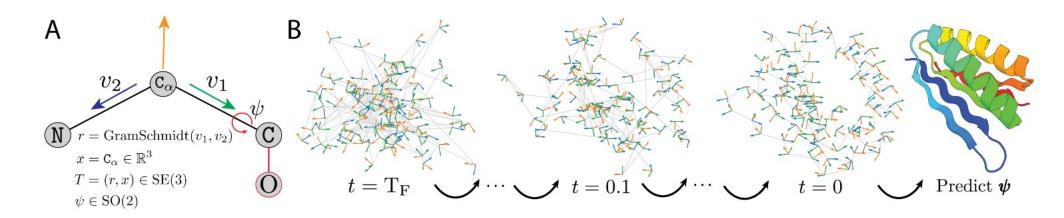
- Motivation
- Preliminaries
- Prior works
- Method
- Future Plan

# Robot manipulations with diverse manifold



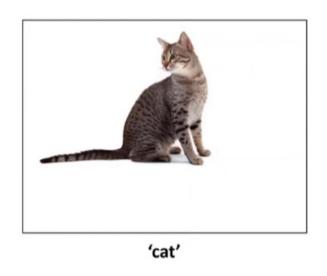
- Force, torques Euclidean  $\mathbb{R}^d$
- Orientations (SO(3), Sphere  $S^d$ )
- Robot Poses (SE(3))

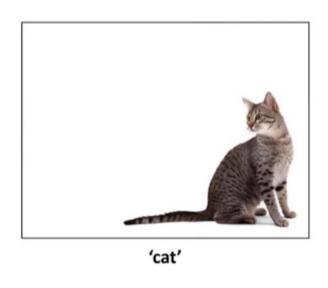
# **Protein Backbone Generation with SE(3) dynamics**



- Starting from N amino residues.
- Rotation SO(3) and Translation  $\mathbb{R}^3$ ; SE(3) group action multiple times.
- Leading to naturalistic protein structure.

# **Geometric Deep learning**







- Example: Convolutional Neural Networks (CNNs)
- Convolution: Translation Invariance
- Max pooling: Scale Invariance
- This 'Inductive Bias' drastically reduce curse of dimensionality

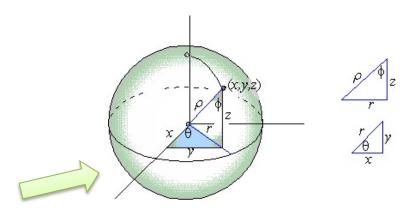
# **Geometry-aware Black-box optimization (example)**

Consider below black-box optimization problem.

Find 
$$x \max_{x \in R^d} f(x)$$
  
s. t.  $||x||_2 = 1$ 

- How to force *x* satisfy equality constraints?
- IDEA:
  - 1. Optimize on  $x \in \mathbb{R}^d$ ; then project x to ||x|| = 1
  - 2. Optimize on  $x \in \mathbb{R}^d$ ; with constraint penalty
  - **3. Optimize on**  $x \in S^{d-1}$ : Sphere

Original Euclidean space  $\{x,y,z\} \to \text{Spherical Coordinates } \{\phi,\theta\}$ ;  $\rho=1$ 



# **Geometry-aware Black-box optimization (example)**

Now, original constrained optimization problem

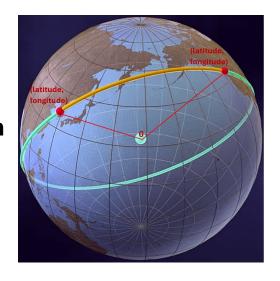
Find 
$$x \max_{x \in R^d} f(x)$$
  
s. t.  $||x||_2 = 1$ 

Transformed to **unconstrained** optimization problem.

Find 
$$x \max_{x \in S^{d-1}} f(x)$$

- Here, the point on the sphere  $S^{d-1}$  is not following Euclidean
- Hint: Distance between two points on Earth?

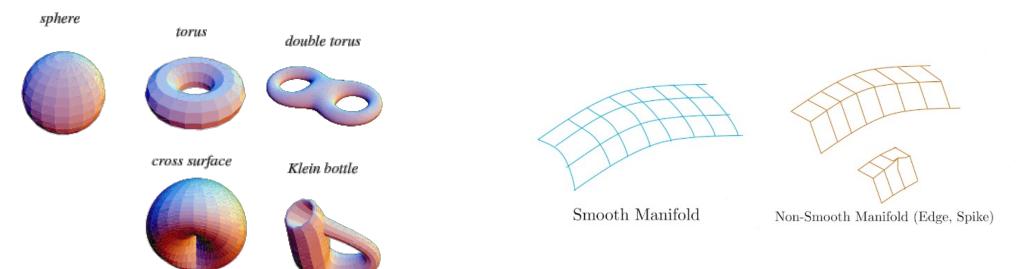
It is not an Euclidean Distance 
$$||x - y||_2$$



To deal with these non-Euclidean geometry, define Riemannian Manifold

#### **Riemannian Manifold**

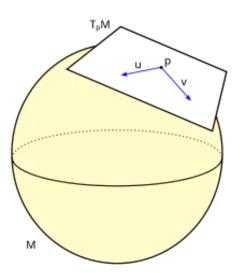
- Informal: Smooth manifold (topological) that does not follows Euclidean geometry But follows Euclidean when look closer to certain point  $p \in M$ . (Locally Resembles)
- EX): Earth Distance between New York and Seoul (long distance):  $2\pi r \times \frac{\theta}{360^{\circ}}$ Distance between two people (short distance): calculate with ruler; ||x - y||



#### **Riemannian Manifold**

#### Formal description:

M be a smooth manifold  $C^{\infty}$ , (No edges, spikes)



- For each point  $p \in M$ , there is an associated vector space  $T_pM$  called tangent space of M at p.
- We define metric g to 'measure' in M.  $g_p: T_pM \times T_pM \to \mathbb{R}$
- We write  $\langle u,v\rangle_p=g_p(u,v)$  on the tangent space.
- The norm is defined as:  $\|v\|_p = \sqrt{g_p(v,v)}$
- Smooth manifold M + Riemannian metric g = Riemannian Manifold (M, g)

#### Riemannian Manifold

Geodesics: Distance between New York and Seoul

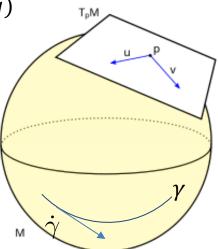
- Smooth manifold M + Riemannian metric g = Riemannian Manifold (M,g)
- Now we can calculate **length of the curve** defined on *M* as:

$$L(\gamma) = \int_{a}^{b} \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt.$$

- Where  $\gamma: [a, b] \to M$  continuously differentiable curve with boundary condition:  $\gamma(a) = p, \gamma(b) = q$
- By taking infimum of this leads to distance called geodesic distance

$$d_M(p,q) = \inf_{\gamma:[a,b]\to M, \ \gamma(a)=p,\gamma(b)=q} \int_a^b \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} dt.$$

And corresponding curve  $\gamma$  is called **Geodesics.** 



#### Riemannian Manifold

Mapping function between Manifold and Tangent Space:

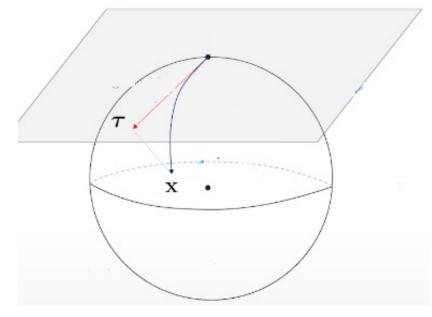
Exponential map: From tangent space to M

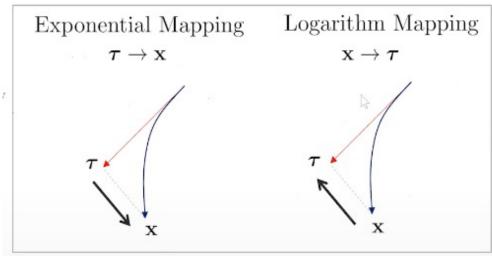
$$Exp_p:T_pM\to M$$

Logarithmic map: From *M* to tangent space

$$\operatorname{Log}_p: U \subset M \to T_pM$$

Where U is locally defined near p

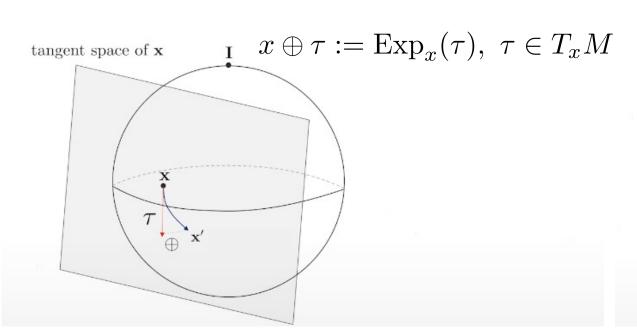


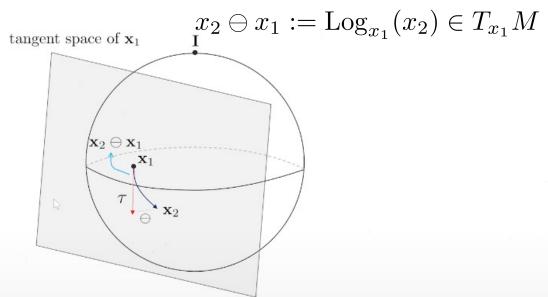


#### Riemannian Manifold

Plus and Minus operator in Riemannian manifold:

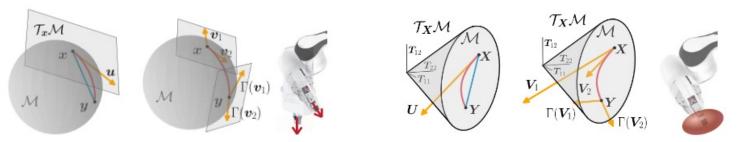
We can define  $\oplus$  and  $\ominus$  operator as:





#### Riemannian Manifold

Examples of Geodesics, Mapping function on Sphere, SPD manifold



(a) Sphere manifold  $S^2$  (incl. e.g. orientations).

(b) SPD manifold  $S_{++}^2$  (incl. e.g. stiffness ellipsoids)

Table 1: Principal operations on the sphere  $S^d$  and SPD manifold  $S_{++}^D$  (see [25, 26, 27] for details).

| Manifold   | $d_{\mathcal{M}}(oldsymbol{x},oldsymbol{y})$                                                      | $\operatorname{Exp}_{oldsymbol{x}}(oldsymbol{u})$                              | $Log_{m{x}}(m{y})$                                                                                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $S^d$      | $\arccos(\boldsymbol{x}^{T}\boldsymbol{y})$                                                       | $oldsymbol{x}\cos(\ oldsymbol{u}\ )+\overline{oldsymbol{u}}\sin(oldsymbol{u})$ | $d(\boldsymbol{x}, \boldsymbol{y}) \frac{\boldsymbol{y} - \boldsymbol{x}^{T} \boldsymbol{y} \boldsymbol{x}}{\ \boldsymbol{y} - \boldsymbol{x}^{T} \boldsymbol{y} \boldsymbol{x}\ }$ |
| $S^D_{++}$ | $\ \log(\boldsymbol{X}^{-\frac{1}{2}}\boldsymbol{Y}\boldsymbol{X}^{-\frac{1}{2}})\ _{\mathrm{F}}$ | $X^{\frac{1}{2}} \exp(X^{-\frac{1}{2}}UX^{-\frac{1}{2}})X^{\frac{1}{2}}$       | $X^{\frac{1}{2}}\log(X^{-\frac{1}{2}}YX^{-\frac{1}{2}})X^{\frac{1}{2}}$                                                                                                             |

#### Riemannian Manifold

Euclidean space is a special case of a Riemannian Manifold

For each point in  $p \in \mathbb{R}^d$ , associated tangent space:  $T_p \mathbb{R}^d \cong \mathbb{R}^d$ 

| Manifold           | $p \in M$                                                                            | $p \in \mathbb{R}^d$                                   |
|--------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| Metric:            | $g_p: T_pM \times T_pM \to \mathbb{R}$                                               | $g_p: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ |
| Inner Product:     | $\langle u, v \rangle_p = g_p(u, v)$                                                 | $g(u,v) = u^{\top}v = \sum_{i=1}^{d} u_i v_i$          |
| Norm               | $  v  _p = \sqrt{g_p(v,v)}$                                                          | $  v  _p =   v   = \sqrt{v \cdot v}$                   |
| Geodesic distance: | $d_M(p,q) = \inf \int_a^b \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} dt.$ | $d_{\mathbb{R}^d}(p,q) =   p-q  _2$                    |

# **Geometry Aware Bayesian Optimization (GaBO)**

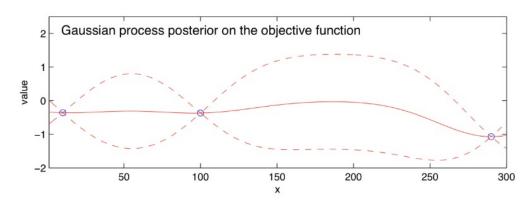
find  $x^* = \operatorname{argmax}_{x \in X} f(x)$ within R rounds, B batch of queries

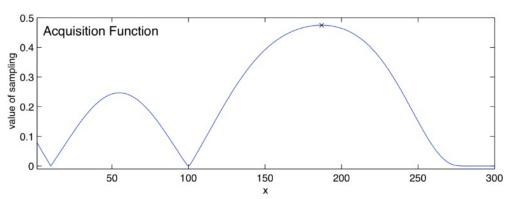


find  $x^* = \operatorname{argmax}_{x \in M} f(x)$ within R rounds, B batch of queries

# **Geometry Aware Bayesian Optimization (GaBO)**

#### Vanilla Bayesian optimization framework:





Train Gaussian Process (GP) Based surrogate models for estimating candidate posterior

$$f(x) \sim GP(\mu(x), K(x, x'))$$

- Use acquisition function (EI, UCB) to select next promising point  $x_{t+1} = \operatorname{argmax}_{x} \alpha(x)$
- Evaluate expensive objective function at selected point  $y_{t+1} = f(x_{t+1})$
- Update GP model with new observation data

Repeat 1~4 until convergence or budget exhausted

# **Geometry Aware Bayesian Optimization (GaBO)**

Adding Inductive Bias for Geometry:

- Train Gaussian Process (GP) Based surrogate models for estimating candidate posterior  $f(x) \sim GP(\mu(x), K(x, x'))$
- Use acquisition function (EI, UCB) to select next promising point  $x_{t+1} = \operatorname{argmax}_{x} \alpha(x)$
- Evaluate expensive objective function at selected point  $y_{t+1} = f(x_{t+1})$
- 4. Update GP model with new observation data

Repeat until convergence or budget exhausted

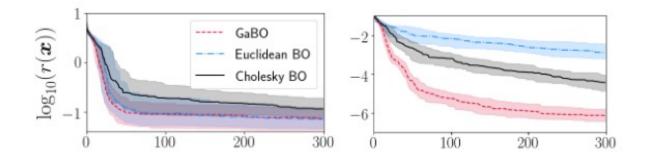
$$k(x_i, x_j) = \theta \exp(-\beta d(x_i, x_j)^2)$$
  
$$k(x_i, x_j) = \theta \exp(-\beta d_M(x_i, x_j)^2)$$

From distance based kernels to geodesics.

Conjugate Gradient on Riemannian manifolds

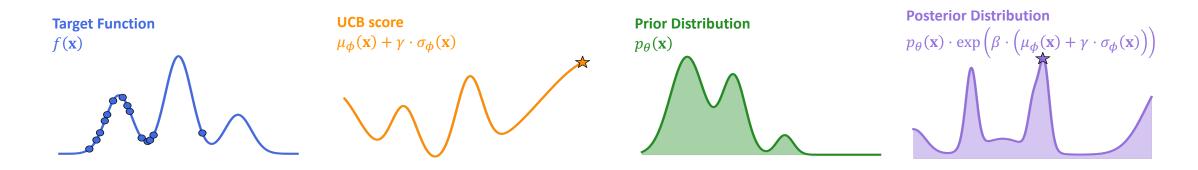
# **Geometry Aware Bayesian Optimization (GaBO)**

#### **Results:**



- Much better than Euclidean BO with constraint penalty.
- Revealing that Geometry-aware (inductive bias) helpful for the optimization.
- Still suffer from high-dimensional settings (BO's fundamental problem)

# Posterior Inference with Diffusion Models for High-dimensional Black-box optimization

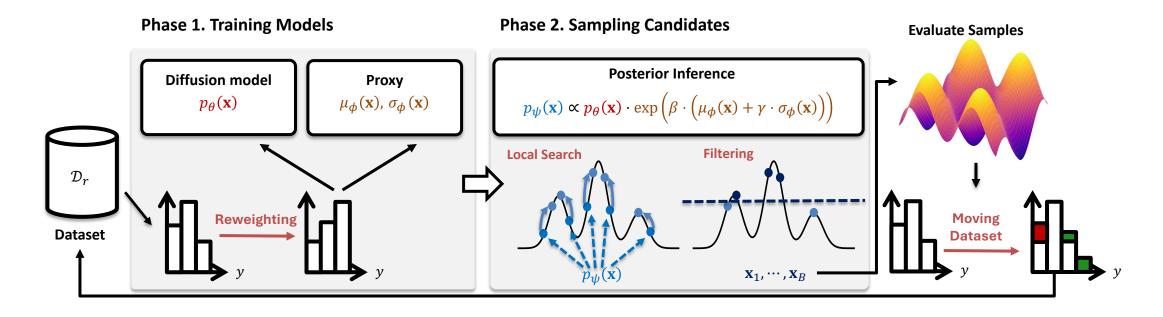


## Motivating figure of our methods

- In high-dimensional space, directly searching  $\underset{\mathbf{x}}{\operatorname{argmax}} \mu_{\phi}(\mathbf{x}) + \gamma \cdot \sigma_{\phi}(\mathbf{x})$  may lead to suboptimal results.
- Sampling from the posterior distribution prevents overemphasized exploration of boundary.

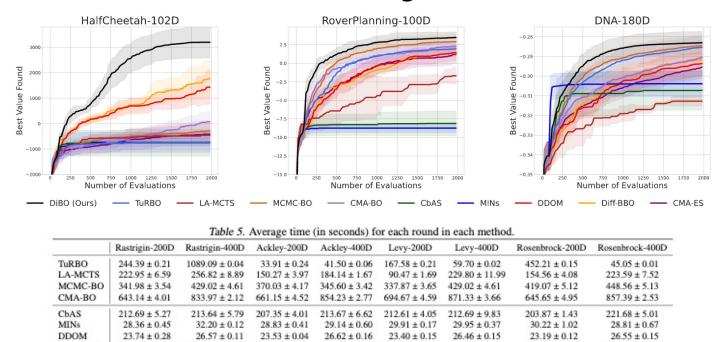
$$p_{ ext{tar}}(\mathbf{x}) = rac{1}{Z} \cdot p_{ heta}(\mathbf{x}) \exp\left(eta \cdot r_{\phi}(\mathbf{x})
ight)$$

# Posterior Inference with Diffusion Models for High-dimensional Black-box optimization



- Train diffusion prior  $p_{\theta}(x)$ , and network ensembles  $\mu_{\phi}(x)$ ,  $\sigma_{\phi}(x)$ .
- Fine-tune diffusion models with **Relative Trajectory Balance (RTB)** loss.
- Sampling candidates, evaluate, and repeat.

# Posterior Inference with Diffusion Models for High-dimensional Black-box optimization



 $143.96 \pm 1.68$ 

 $0.04 \pm 0.00$ 

 $71.99 \pm 0.10$ 

 $130.07 \pm 0.74$ 

 $0.04 \pm 0.00$ 

 $39.55 \pm 0.10$ 

143.97 ± 1.79

 $0.05 \pm 0.00$ 

 $72.21 \pm 0.53$ 

128.33 ± 1.74

 $0.03 \pm 0.00$ 

 $39.57 \pm 0.28$ 

 $144.03 \pm 1.58$ 

 $0.04 \pm 0.00$ 

 $72.88 \pm 0.34$ 

- Did well on high-dimensional settings
- Much more **efficient**, compared to BO based methods.

 $128.75 \pm 0.89$ 

 $0.03 \pm 0.01$ 

 $42.74 \pm 0.26$ 

 $143.80 \pm 1.16$ 

 $0.05 \pm 0.00$ 

 $79.63 \pm 1.07$ 

 $131.16 \pm 0.86$ 

 $0.03 \pm 0.00$ 

 $39.72 \pm 0.18$ 

Diff-BBO

CMA-ES

DiBO

# Method

# Geometry-aware Posterior Inference for High dimensional black-box optimization

Problem is given as:

Find 
$$x^* = \underset{x \in M}{arg \max} f(x)$$

- For R rounds B batch of Query
- Where function  $f(x): M \to \mathbb{R}$  is black-box.
- Manifold *M* is known and assumed to have high dimensionality.

We want to sample from: 
$$\underline{p_{\mathrm{tar}}(\mathbf{x})} = \frac{1}{Z} \cdot \underline{p_{\theta}(\mathbf{x})} \exp{(\beta \cdot \underline{r_{\phi}(\mathbf{x})})}$$

1. Expressive Prior 2. Surrogate function

3. Posterior Sampling method

# Method

# Geometry-aware Posterior Inference for High dimensional black-box optimization

#### Expressive Prior $p_{\theta}(x)$

Possible choices:

- Riemannian Diffusion Models
- Riemannian Score-Based Generative Modeling
- Riemannian Flow-matching

Surrogate function  $r_{\phi}(x): M \to R$ 

Possible choices:

**Geometry Aware CNN** 

Posterior Sampling method

Possible choices:

- Riemannian Classifier Guidance
- Twisted Diffusion Sampler
- Fine-tuning method? (Not developed yet)

# Method (Not fixed)

# Geometry-aware Posterior Inference for High dimensional black-box optimization

Task:

Synthetic function with  $S^d$ ,  $SPD^d$  domain.

Real world tasks: Robot manipulation task.

#### Algorithm:

- 1. Train Prior  $p_{\theta}(x)$
- 2. Train Surrogate function  $r_{\phi}(x): M \to R$
- 3. Posterior Sampling method
- 4. Sample from posterior  $\{x_i\}_{i=1}^N \sim p_{\theta}(x) \exp r_{\phi}(x)$
- 5. Query samples to the function  $\{y_i\}_{i=1}^N = \{f(x_i)\}_{i=1}^N$

Repeat 1~5 iteratively

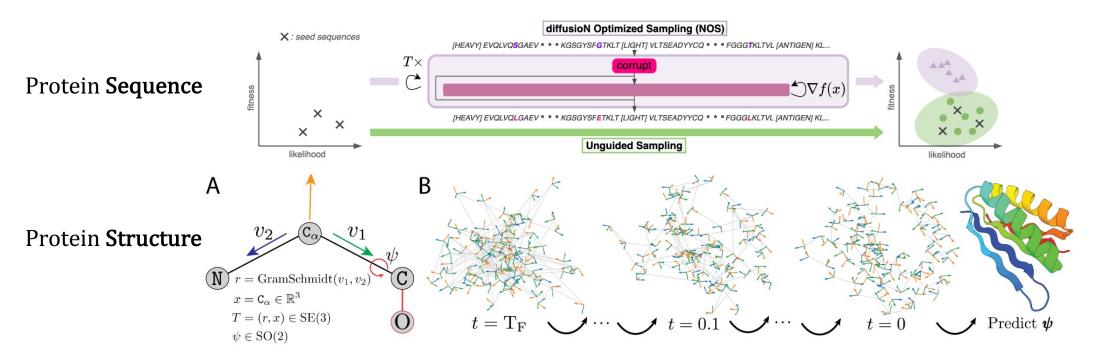
- ← Riemannian Score-Based Generative Modeling
- ← Geometry Aware CNN
- ← Twisted Diffusion Sampler

# **Another Task**

# Protein Structure Design with Riemannian Posterior Inference

If we can develop Riemannian Fine-tuning method  $p_{\text{tar}}(\mathbf{x}) = \frac{1}{Z} \cdot p_{\theta}(\mathbf{x}) \exp(\beta \cdot r_{\phi}(\mathbf{x}))$   $\mathbf{x} \in M$ 

Task: Protein design with high binding affinity.



Design protein structure iteratively optimizing arbitrary function

## **Future Plan**

# **Geometric Deep Learning + Generative models**

- Designing best way to incorporate inductive bias in Generative models.
- Application of above methods to downstream tasks (Robot manipulation & Material/Scientific Design)

## Reference

- Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization (ours)
- SE(3) diffusion model with application to protein backbone generation
- Fast protein backbone generation with SE(3) flow matching
- Protein Design with Guided Discrete Diffusion
- Flow Matching on General Geometries
- Riemannian Diffusion Models
- Riemannian Score-Based Generative Modelling
- Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
- High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds

Generative Protein Design

Riemannian Generative Models

Q&A

