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• Maximum Entropy RL

• Representative algorithms: Soft-Q Learning(SQL), Soft Actor Critic(SAC)

• KL-Divergence Constraints for Policy Search

• Representative algorithms: Trust Region Policy Optimization(TRPO), 
Maximum a posteriori policy optimization (MPO), Advantage weighted regression (AWR),

• Return conditioned trajectory planning

• Representative algorithms:
Planning with diffusion for flexible behavior synthesis (Diffuser)
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Standard RL Policy Search Problem

• Find 𝜃𝜃 that maximizes cumulative rewards, with parameterization:

• In other words,

To make RL policy search problem into probabilistic inference framework:

• Draw a Probabilistic Graphical Model (PGM), where:

Most probable trajectory: Trajectory from the optimal policy.

Inference of posterior action conditional               : Gives the optimal policy.
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How to draw the PGM?

• Simplest graphical model to express control problem.

• When we see the graphical model: Decompose the Joint Distribution!

• Is it enough to satisfy below questions?

Most probable trajectory: Trajectory from the optimal policy.

Inference of posterior action conditional               : Gives the optimal policy.

Cannot induce reward/cost 
information here.
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How to draw the PGM?

• Introduced additional random variable

• When we see the graphical model: Decompose the Joint Distribution!

Decision Choice 1: As we were not interested in action prior (online), we can take it as simplest: 

Decision Choice 2: We define conditional distribution: 
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Most probable trajectory as trajectory from the optimal policy

• From the two Decision Choices, we can factorize posterior:

So we can set the target distribution as:

• Product distribution of Dynamics and exponential of Reward Sum (stochastic dynamics)

• Product distribution of Feasible dynamics and exponential of Reward Sum (deterministic dynamics)

Decision 1

Decision 2

RHS term should be ∝;
We can incorporate this
defining reward 𝑟𝑟(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)
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Inference of posterior action conditional 𝒑𝒑(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕,𝜽𝜽) : Gives the optimal policy.

• Now lets find out how to recover optimal policy                        from designed PGM. 

• Definition 1. 

• Definition 2. 
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Inference of posterior action conditional 𝒑𝒑(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕,𝜽𝜽) : Gives the optimal policy.

Definition 1. Definition 2.

• Formulation 1; Marginalizing 𝛽𝛽𝑡𝑡(𝑠𝑠𝑡𝑡) with a𝑡𝑡

Decision 1
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Inference of posterior action conditional 𝒑𝒑(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕,𝜽𝜽) : Gives the optimal policy.

Definition 1. Definition 2.

• Formulation 2; Marginalizing 𝛽𝛽𝑡𝑡 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 with 𝑠𝑠𝑡𝑡+1

• Formulation 3; Optimal target policy from 𝛽𝛽𝑡𝑡 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝛽𝛽𝑡𝑡(𝑠𝑠𝑡𝑡) Decision 1



Theory of control as probabilistic inference

Industrial & SystemsEngineering 11

Inference of posterior action conditional 𝒑𝒑(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕,𝜽𝜽) : Gives the optimal policy.

• Definition 3 (Soft Q):

• Definition 4 (Soft V):

• From formulation 1: 

• From formulation 2:

• From formulation 3:

If the scale of 𝑄𝑄 is large,
High Q-value dominates the other actions.

Soft Maximization
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Problem of the drawn PGM; Overly optimistic Q function

• Stochastic dynamics Leads to overly optimistic Q function, risk seeking property.

Where original bellman expectation equation:

• EX): Two states for 𝑠𝑠𝑡𝑡+1, 

• Win the lottery with 𝑝𝑝 𝑠𝑠𝑡𝑡+1 = 𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 = 𝑏𝑏𝑏𝑏𝑏𝑏 = 0.000001

• Lose the lottery with 𝑝𝑝 𝑠𝑠𝑡𝑡+1 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 = 𝑏𝑏𝑏𝑏𝑏𝑏) = 0.999999

Another soft maximization term

As 𝑽𝑽 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝒘𝒘𝒘𝒘𝒘𝒘 dominates, always choose action to buy lottery.
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Problem of the drawn PGM; Overly optimistic Q function

• Deterministic dynamics much more desirable.

Where original bellman expectation equation:

• We can safely use deterministic update of bellman equation, extract the policy.

Then, is this framework only available in deterministic settings? 
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So what this inference of optimal conditioned policy exactly optimizes?

• Lets get back to the optimality conditioned trajectory distribution (Target).

• What we want to model is policy; So we formulate differently with above equation.

• We can define approximate trajectory distribution closest to the target distribution.

• Then make this optimization problem: (1), (2)
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So what this inference of optimal conditioned policy exactly optimizes?

• In deterministic case,

• Also most probable approximate distribution will be:

• Then optimization problem solves: (1), (3)
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So what this inference of optimal conditioned policy exactly optimizes?

In deterministic setting; Approximation of inference, equivalent to max entropy RL



Theory of control as probabilistic inference

Industrial & SystemsEngineering 17

So what this inference of optimal conditioned policy exactly optimizes?

• In stochastic case we cannot derive the same as deterministic.

• We cannot erase optimality conditioned dynamics terms.

• Directly optimize :

• Leads:

So, to modeling the approximation as (2), we cannot use model-free algorithms.



Theory of control as probabilistic inference

Industrial & SystemsEngineering 18

Direct Solution! Abuse PGM.

• Why not we just model our approxmate distribution with (3) rather than (2) ? 

• Pros: We can recover the maximum entropy RL objective, like deterministic case.
Agents cannot control dynamical systems like (2), not intuitive.
(Is there anyone who can make environment to always win the lottery?)

• Cons: We abuse the PGM w.r.t. optimality -> No theoretical grounds (yet)
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Connection to Structural Variational Inference

• The theoretical grounds of abused solution!

• Target distribution:

• Variational approximate distribution:

• With given observation, ELBO with variational trajectory distribution: 

𝑞𝑞,𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝
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Connection to Structural Variational Inference

• The theoretical grounds of abused solution!

• Target distribution:

• Variational approximate distribution:

• Then we set dynamics distributions 𝑞𝑞 with 𝑝𝑝 𝑠𝑠1 ,𝑝𝑝 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 → Recovers Max-Entropy RL

• Abused distribution is one of the ELBO, derivation of our designed PGM (Got Theoretical Grounds.)

𝑞𝑞,𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝 1 , (2)
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How can we extract policy from the abused settings (ELBO)

• We already discussed before soft-𝑸𝑸,𝑽𝑽 and optimal policy for stochastic/deterministic settings.

• What about abused settings, any difference with exp 𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 − 𝑉𝑉 𝑠𝑠𝑡𝑡 ?

From the max-entropy objective function:

If 𝑡𝑡 = 𝑇𝑇:

Define:
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How can we extract policy from the abused settings (ELBO)

If 𝑡𝑡 = 𝑡𝑡 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠):

• Policy should also consider the future expected value. (Summation of 𝑡𝑡 = 1 ~ 𝑇𝑇 recovers original objective.)

Define, same as Bellman Expectation Eq.
We can mitigate risk-seeking 𝑄𝑄 Problem!

Now defined on 𝑄𝑄
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1. We want to transform the control problem -> Probabilistic Inference.

2. Draw PGM which can infer 𝑝𝑝 𝑎𝑎𝑡𝑡 𝑠𝑠𝑡𝑡 ,𝑂𝑂1:𝑇𝑇 , 𝑝𝑝(𝜏𝜏|𝑂𝑂1:𝑇𝑇) posteriors.

3. Decompose and got optimal target distribution: 𝑝𝑝(𝜏𝜏|𝑂𝑂1:𝑇𝑇)

4. To find out optimal policy, defined soft 𝑸𝑸,𝑽𝑽 functions and found analytical form of 𝝅𝝅∗(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕)
Stochastic dynamics has risk-seeking problem with 𝑄𝑄 function.

5. With defining optimal approximate distribution (closest distribution), 
Transformed inference problem to optimization problem.
Again, problem with stochastic dynamics setting has problem. (Only model-based works)

6. We abused the PGM, and modeled approximate distribution differently.
This reveals that one of the ELBO of PGM := Abused distribution.

7. Abused distribution recovers Max Entropy RL, no problem of risk-seeking 𝑄𝑄 function.
Most of the Max-Entropy RL algorithms built on this setting.
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Maximum Entropy Policy Gradients

• Policy Gradients with the Max-Entropy Objective

• We can just put −𝐥𝐥𝐥𝐥𝐥𝐥𝒒𝒒𝜽𝜽 𝒂𝒂𝒕𝒕 𝒔𝒔𝒕𝒕 penalty to the original reward, and use the policy gradient algorithms.
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Soft Q Learning

• With below two equations, definition of soft 𝑉𝑉, and its optimal policy 𝑞𝑞(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡).

• We can parameterize 𝑄𝑄𝜙𝜙 only to express both equations.

• Training 𝑄𝑄𝜙𝜙: 

• Training 𝜋𝜋𝜃𝜃:

Stein Variational Gradient Descent (SVGD) to match: 𝜋𝜋𝜃𝜃 𝑎𝑎𝑡𝑡 𝑠𝑠𝑡𝑡 ∝ exp(𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜙𝜙 (𝑠𝑠𝑡𝑡,⋅))

Importance Sampling with current policy
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Soft Actor Critic

• Explicit modeling of the policy network 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡;𝜃𝜃)

• Train both soft 𝑉𝑉,𝑄𝑄 with MSE loss:

• Training 𝜋𝜋𝜃𝜃:

Check lemma 1 from Haarnoja (2018) 
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Replacing Prior 𝒑𝒑(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕)

• Decision Choice 1: As we were not interested in action prior (online), we can take it as simplest:

• What if we assume the prior as 𝑝𝑝 𝑎𝑎𝑡𝑡 𝑠𝑠𝑡𝑡 = 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) or 𝜋𝜋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) ?

• Max Entropy objective leads to KL regularized objective. TRPO/PPO/AWR….

• Trajectory planning. Diffuser

Modeling Entire trajectory distribution with offline dataset.
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1.  Constrained black-box optimization with posterior inference. (Taeyoung Yun, Kyuil Sim) ~NIPS(2025)

2. Probabilistic Inference for sequential decision making. (Diffusion meets control/Control meets diffusion)
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