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Motivation of understanding control as probabilistic inference framework

« Maximum Entropy RL
JMaxEnt (7T;p, T) = Eatwﬂ(at|st),st+1~p(st+1|st,at) [23:1 r (St7 at) + aHW [at | St} 3
« Representative algorithms: Soft-Q Learning(SQL), Soft Actor Critic(SAC)

« KL-Divergence Constraints for Policy Search

Xy Borpy, ammoy, | 7oty A0 (3,0)| Eanpa,,, [Pkt (70, (15) | 7o (15)] < 6

« Representative algorithms: Trust Region Policy Optimization(TRPO),
Maximum a posteriori policy optimization (MPO), Advantage weighted regression (AWR),

« Return conditioned trajectory planning

p (7| Ovr) o< p(r) exp ({7 (st00) )

* Representative algorithms:
Planning with diffusion for flexible behavior synthesis (Diffuser)
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Theory of control as probabilistic inference

Standard RL Policy Search Problem

 Find @ that maximizes cumulative rewards, with parameterization: p(a¢|s:,t) = ma(as|st)

i} T
0* = argmaxg Y, E(s, a0)mp(ss.arl6) [M(515 a1))]

 In other words,

p(7l0) = p(s1,at,...,sr,ar | 0) = p(s1) Hthlp(at | st 0)p(se41 | st;ar).

0* = argmaxg E,p(-19) [Zthl r(S¢, at)

To make RL policy search problem into probabilistic inference framework:
« Draw a Probabilistic Graphical Model (PGM), where:
Most probable trajectory: Trajectory from the optimal policy.

Inference of posterior action conditional p(a¢|s:,0) : Gives the optimal policy.

[{}] SYSTEM INTELLIGENCE LAB



Theory of control as probabilistic inference

How to draw the PGM?

(a) graphical model with states and actions
« Simplest graphical model to express control problem.
«  When we see the graphical model: Decompose the Joint Distribution!

p(817a17827a27 ces ,CLT,ST+1) ZP(Sl) Hthl p(at) 'p(5t+1 \ St,at)

« Is it enough to satisfy below questions?

Cannot induce reward/cost

Most probable trajectory: Trajectory from the optimal policy. information here

Inference of posterior action conditional p(a:|s:,0) : Gives the optimal policy.
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Theory of control as probabilistic inference

How to draw the PGM?

(01 )(02)(03)([O4)
N T N
(a1 )|(ag )| a3 )| as)

[.’ S1 ->~ S9 _i_fj—>:f” S3 :_j—>:f" S4 )
(b) graphical model with optimality variables

1 if timestep t is optimal

« Introduced additional random variable O; = :
0 otherwise

«  When we see the graphical model: Decompose the Joint Distribution!
p(7, 01:r) = p(s1) [Tj—y P(ae)p(Or = 1| 51, a0) p(sisa | 51, )

Decision Choice 1: As we were not interested in action prior (online), we can take it as simplest:
p(at) :p(at‘st) = TA]

Decision Choice 2: We define conditional distribution: p(O; = 1|s;,a:) = exp(r(ss, ay))
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Theory of control as probabilistic inference

Most probable trajectory as trajectory from the optimal policy

* From the two Decision Choices, we can factorize posterior:
RHS term should be «;

Decision 1 ==  p(7 | O1.7) x p(7, O1.7) = p(51) Hle p(Or =11 s¢,0a¢) p(s¢41 | ¢,a:)  We can incorporate this
defining reward r (s, a;)
Decision 2 === :p(51>Ht 1exp( (Staat))p(st—}—l ! Staat)
[ (s1 Ht L P(St41 | Staat)] exp <ZtT:1 T(Staat)) :

So we can set the target distribution as:
»  Product distribution of Dynamics and exponential of Reward Sum (stochastic dynamics)
p(rlorr) o |p(s1) Ty p(sisr | st )| exp (S (e, ar))

« Product distribution of Feasible dynamics and exponential of Reward Sum (deterministic dynamics)

p(tlor.r) o< 1[p(T) # 0] eXP(Zle r(st, at))
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Theory of control as probabilistic inference

Inference of posterior action conditional p(a;|s;, 8) : Gives the optimal policy.

«  Now lets find out how to recover optimal policy P(at|st; Or.T = 1) from designed PGM.

(01 ) (0 )(03)( 0Oy
AN\ AN\ AN\ A
(a1 )|(ag )| a3 )| as)

(s1 )= 82 5 53 5 54 )
(b) graphical model with optimality variables
« Definition 1. B:(st, a:) = p(Or.r|se, ar)

« Definition 2. Bt(st) = p(Os.1|s¢t)

[{}] SYSTEM INTELLIGENCE LAB



Theory of control as probabilistic inference

Inference of posterior action conditional p(a;|s;, 8) : Gives the optimal policy.
Definition 1. Bt(St, CLt> = p(Ot;T’St, CLt) Definition 2. 5t(8t> = p(@t;ﬂst)

Formulation 1; Marginalizing S;:(s;) with a;

5t(3t) :p(Ot:T \ St) = / p(ot:Taat|3t)dat (1)
A
= /A p(i?;”Z:)‘St)p(at|5t)dat (2)
= / p(Ot:T | Staat)p(at ’ St) day (3)
A
= Bt(staat)p(at | St) day (4)
A
Decision 1 ==mp Bi(st) = [ 4 Be(s¢, az)day

plat) = plae|se) = (AL ]
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Theory of control as probabilistic inference

Inference of posterior action conditional p(a;|s;, 8) : Gives the optimal policy.
Definition 1. B¢(s¢, a:) = p(Or.r|s¢, ar) Definition 2. (:(s¢) = p(Os.1|st)
« Formulation 2; Marginalizing B;(s;, a;) with s;44
Bi(st,ar) = p(Owr | st,at) (1)

- / Bra1(st+1) P(St41 | 5, 0e) PO | 51, a¢) dsiya. (2)
S

« Formulation 3; Optimal target policy from B:(st, a;), B:(st) Decision 1

_ p(81,a¢|Or.7) _ p(Or.r|st,at) plat|st) p(st)
p(at ‘ 5t Ot:T) — p(s¢|Opr) p(O+.1|st) p(st)
x p(Or.1lse,ar) _ Bi(se,ar)
p(O¢.rlse) — Be(se) 7
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Theory of control as probabilistic inference

Inference of posterior action conditional p(a;|s;, 8) : Gives the optimal policy.
« Definition 3 (Soft Q): @ (s¢,a:) = log B; (s¢,a)

« Definition 4 (Soft V): V (s;) = log 3 (s¢)

If the scale of Q is large,
High Q-value dominates the other actions.
Be(st) = fA Be(st, ar)day l Soft Maximization

« From formulation 1:

V (s¢) =log [, exp (Q (s¢,ar)) da; = maxa, Q (s¢,ay) .
» From formulation 2:

Be(st,ar) = fg Brr1(st+1) p(St41 | st,a1) p(Or | st,a1) dstya.

Q (st,at) = 7 (st,at) +10g B, p(s,sifsi,ar) [€XP (V (S¢41))]

« From formulation 3:

_ 5t(3t7at) _

plat | st, Orr) = Bi(s2) exp(Q(st, ar) — V(st))
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Theory of control as probabilistic inference

Problem of the drawn PGM; Overly optimistic Q function
« Stochastic dynamics Leads to overly optimistic Q function, risk seeking property.
V (s¢) =log [, exp (Q (s¢,ar)) da; = maxa, Q (s¢,ay) . @ Another soft maximization term

Q (st,a;) =7 (8, at) +10g E, | ~p(siisfsi,ar) [€XP (V (St41))]

Where original bellman expectation equation:
V(st) = maxg, Q(s¢, ay)

Q (st,at) =7 (St;ar) + B, mp(siar|sean) [V (St4+1)]

« EX): Two states for s;,,
« Win the lottery with p(s;41 = win|s;, a; = buy) = 0.000001

« Lose the lottery with p(s;+q = lose |s;, a; = buy) = 0.999999

As V(s;,1 = win) dominates, always choose action to buy lottery.
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Theory of control as probabilistic inference

Problem of the drawn PGM; Overly optimistic Q function

» Deterministic dynamics much more desirable.

V (s¢) =log [, exp (Q (s¢,ar)) da; = maxa, Q (s¢,ay) .
Q (st,ar) =7 (s, ar) +V (S¢41)

Where original bellman expectation equation:

V(st) = maxg, Q(s¢, ay)
Q (st,ar) =7 (se,ar) + V (se41)

« We can safely use deterministic update of bellman equation, extract the policy.

plac | 50, Opr) = BL) — exp(Qsi,a0) — V(sy))

Then, is this framework only available in deterministic settings?
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Theory of control as probabilistic inference

So what this inference of optimal conditioned policy exactly optimizes?
» Lets get back to the optimality conditioned trajectory distribution (Target).
p(rlorr) = |p(s) TI p (5141 | st,20) | exp (1, 7 (si,a0)) (1)
«  What we want to model is policy; So we formulate differently with above equation.
p(T | (91:T) :p(Sl ’ Ol:T) ' Hthl p(at \ St,OlzT) 'p(8t+1 | St,at,OLT)
« We can define approximate trajectory distribution closest to the target distribution.
p(t) =p(s1 | Ownr) szlp(stﬂ | st,ar, Orr) m(ar | se) (2)
« Then make this optimization problem: (1), (2)

Dxr,(p(1)|lp(7)) = —Erp(r)[log p(1) — log p(7)].

[{}] SYSTEM INTELLIGENCE LAB



Theory of control as probabilistic inference

So what this inference of optimal conditioned policy exactly optimizes?
* In deterministic case,
p(rlorr) = |p(s) TI p (5141 | st,20) | exp (1, 7 (si,a0)) (1)

« Also most probable approximate distribution will be:

p(r) =p (1| Orr) TIi_y P (8641 | 8,20, Orr) (2 | 5¢)
= p(7) = p(s1) H,lep(st—l-l | se,an) m(ay | sy) (3)

« Then optimization problem solves: (1), (3)

Dxr,(p(1)|lp(7)) = —Erp(r)[log p(1) — log p(7)].
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Theory of control as probabilistic inference

So what this inference of optimal conditioned policy exactly optimizes?
T
— Dk (P(7)[[p(7)) =E7<p(r) [logp(sl) + > (logp(seyr1 | se,as) +7 (s, 1))
t=1
T
—logp (s1) Z logp (st+1 | st,a¢) + log 7 (ay | st))]
t=1

T
=E . p(r) [Zr (s¢,ar) — logm (ay | st)

t=1

— Z B (s, a,)~p(st,a0)) [ (s¢,a¢) — logm (ag | s¢)]
t=1

= Es, a0 misean) [T (86,80)] + s, sy [H (7 (2 | s¢))]
t=1

In deterministic setting; Approximation of inference, equivalent to max entropy RL
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Theory of control as probabilistic inference

So what this inference of optimal conditioned policy exactly optimizes?

* |n stochastic case we cannot derive the same as deterministic.
T T
p(rlorr) = |p(s) TI p (5141 | st,20) | exp (1, 7 (si,a0)) (1)

p(r) = p(s1 | Orr) TIi—y P (se41 | st @ Ovr) (2 | s0) (2)

« We cannot erase optimality conditioned dynamics terms.

» Directly optimize :  Dky,(p(7)||p(7)) = —Ep()[logp(T) — log p(7)].

+ Leads: Ervpir) [logp (s1) + Y0, 7 (s1,20) +1og p (s | sv,a0)| + H(B(7))

So, to modeling the approximation as (2), we cannot use model-free algorithms.
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Theory of control as probabilistic inference

Direct Solution! Abuse PGM.

«  Why not we just model our approxmate distribution with (3) rather than (2) ?

p(rlovr) = [p(s0) T p (st | stsan)| exp (SF, 7 (se,a0)) (1)

PT) =p(s1 | Orp) =y P (Se41 | 80,80, Orp) 7 (ag | 80) (2)

=p(r) =p(s1) [, P (8e41 | St,a0) 7 (e | 5¢) (3)

» Pros: We can recover the maximum entropy RL objective, like deterministic case.
Agents cannot control dynamical systems like (2), not intuitive.
(Is there anyone who can make environment to always win the lottery?)

« Cons: We abuse the PGM w.r.t. optimality -> No theoretical grounds (yet)
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Theory of control as probabilistic inference

Connection to Structural Variational Inference

The theoretical grounds of abused solution!

Target distribution: p(Tlo1.7) = [p (s1) Hlep(stﬂ | Staat)} exp (Zt 1T (s¢,ay) )
2

Variational approximate distribution: ¢(7) = ¢ (s1) Hthl q(st+1|se,ar)q(ar[sy).(2) gqnotp

With given observation, ELBO with variational trajectory distribution:
logp (Or.1) = log/ p (Or.1,s1.7,a1.7) dsi.rday.7

S1.7, a1
= 10g//p(01:T,51:T,a1:T) 4(sur 1T)dSl:TdalzT
q (SlzT7 a1:T)

p (Ol:Ta S1:T, a-1:T)
q (51:T> a1:T)

> E(slzT,alzT)Nq(slzT,alzT) [logp (01:T751:T, al:T) —log g (S1:T, al;T)]

— lOg E’(SLT,al;T)NQ(SI:T7a11T)
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Theory of control as probabilistic inference

Connection to Structural Variational Inference

The theoretical grounds of abused solution!
Target distribution: p(Tl|o1.7) = [p (s1) Hlep (St+1 | Styat)} €xp (Zthl r (Suat)) (1)
Variational approximate distribution: ¢(7) = ¢ (s1) Hthl q(si+1 | se,as)q(as |se).(2) qnotp

log p(O1.1) > E(SLT,alzT)Nq(Sl;T,al;T) log p (Or.1, 1.7, a1.7) — log g (s1.7, a1.7)]

ﬂ put (1), (2)

T
logp (OlZT) > E(SlzTaal:T)NQ(SlzT)alzT) [Zt:l r (St? at) _ log q (at ‘ St)}
Then we set dynamics distributions g with p(s;), p(st41ls: a:) = Recovers Max-Entropy RL

T
- thl E(St;at)Nﬁ(St,at) [7“ (St7 at) +H <7T (at | st))]

Abused distribution is one of the ELBO, derivation of our designed PGM (Got Theoretical Grounds.)
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Theory of control as probabilistic inference

How can we extract policy from the abused settings (ELBO)
« We already discussed before soft-Q,V and optimal policy for stochastic/deterministic settings.
« What about abused settings, any difference with exp(Q(st, a;) — V(st))?
From the max-entropy objective function:
e Esanmisran [ (81.20) + H (7 (ay | 51))]

If t =T:

E(3T>GT>N23(3T,GT) [T<ST7 CLT) - 1Ogﬂ'(aT | ST)

)
- EsTwﬁ(sT) _EaTNW(-IsT) [r(sT,ar) —logm(ar | ST)H
= Esrnp(sr) |[EBapmn(lse) [—logm(ar | s7) + 7(s7,ar)]] Define:
i 1 V(sr) =log [, exp(r(sr, ar))dar
= Bosrnp(sr) | DKL (W(GT | sT) | Z(7) eXp(T(STaGT))) + log Z(ST)]
[ 1
= Bopepton) | ~Dra (nlar [ sm) | s explr(om,ar))) + Vsr) | 7 (arlse) = explr(srar)
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Theory of control as probabilistic inference

How can we extract policy from the abused settings (ELBO)
If t =t (intermediate steps):

« Policy should also consider the future expected value. (Summation of t = 1 ~ T recovers original objective.)

E(st,amﬁ(st,an[T(Staat) — logm(ay | St)+Est+1~p<-|st,at>[V(Sm)}]

1
2 ey oy | 1(50,00) + Ba, [V(si41)] — logm(ar | 50)

~~

= Q(s¢,ay) _ Define, same as Bellman Expectation Eq.

We can mitigate risk-seeking Q Problem!
= Es,p(se) [Eatww(-|st) | Q(s¢,a¢) — logm(ay | 5t>]}

|ﬁ eXp(Q(st, ))) + log Z(st)}

Now defined on Q
V(s¢) = log [, exp(Q(s¢, ar))dat

— EStNﬁ(St) [_DKL<7T( ' ‘ St)

1
‘exp(V(st)

=| Eappon) |~ Drcifmlar | 50)

] exp(Q(st,at))) + V(St)}

T (ag | s¢) = exp (Q (s¢,a¢) — V (st))
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In Summary:

1. We want to transform the control problem -> Probabilistic Inference.
2. Draw PGM which can infer p(a;|s;, 01.7), p(t]|04.7) posteriors.
3. Decompose and got optimal target distribution: p(z|0;.7)

4. To find out optimal policy, defined soft Q,V functions and found analytical form of ©*(a;|s;)
Stochastic dynamics has risk-seeking problem with Q function.

5. With defining optimal approximate distribution (closest distribution),
Transformed inference problem to optimization problem.
Again, problem with stochastic dynamics setting has problem. (Only model-based works)

6. We abused the PGM, and modeled approximate distribution differently.
This reveals that one of the ELBO of PGM := Abused distribution.

7. Abused distribution recovers Max Entropy RL, no problem of risk-seeking Q function.
Most of the Max-Entropy RL algorithms built on this setting.

[{}] SYSTEM INTELLIGENCE LAB



Applications of Control as Probabilistic Inference

Maximum Entropy Policy Gradients

« Policy Gradients with the Max-Entropy Objective

T
VQJ(0> - Z VOE(St,at)NQ(St,at) [”I“ <St’ at) +H (QQ (at | St)>]

t=1

T T
— Z E(st,at)wq(st,at) VQ ]'Og q9 (at | St) <Z r (St/ 9 at/) - ]'Og q9 (at/ | St/) - 1)]
B t'=t

t=1
T
— Z E(St ,at)NCI(St ,at)
t=1

T
Vologagp (a | st) <ZT (sv,ar) —logge (ay | sy) — b(&f/))] ,

t'=t

v@‘](e) — ZZ::[ E(St,at)Nq(St,at) |:v9 log QG (at | St) A (St7 at)]

« We can just put —logqq(a;|s;) penalty to the original reward, and use the policy gradient algorithms.
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Applications of Control as Probabilistic Inference

Soft Q Learning

« With below two equations, definition of soft V, and its optimal policy q(a;|s:).
V (st) = log/ exp (Q (s¢,ar)) day
A

q(as | s¢) = exp (Q (s¢,ar) — V (s¢))

«  We can parameterize Qg4 only to express both equations.

. . 2
* Tralnlng Q¢‘ £(¢) = E(Staat)NQ(St;at) [(T (St7 at) + EQ(St+1|St;at) [Viﬁ (St+1)] - Q¢ (St7 at)) }

¢ < ¢p—ak [% (st,a1) (Qp (st,ar) — (7 (st,ar) +1og [, exp (Q (St41,ar41)) dat+1))} :

exp(Q(str1,at11
]'Og]EQ(at) p( (q(;rt) +1))

. Training mp: Importance Sampling with current policy

Stein Variational Gradient Descent (SVGD) to match: g (a;|s;) « exp(Qift (5¢,7))
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Applications of Control as Probabilistic Inference

Soft Actor Critic

« Explicit modeling of the policy network m(a;|s;; 6)

T™Q (st,a¢) 2 1 (s, ar) +VEsyymp [V (St41))]
V (st) = Ea,nr [Q (st,a) —logm (a; | 5¢)] <4@mm Check lemma 1 from Haarnoja (2018)
« Train both soft V,Q with MSE loss:

2
g<¢) - E(St,at)Nq(St,at) |:(T (St7 at) + Eq(St+1\St,at) [V¢ (St-l-l)] _ Qﬁb (St7 at)) }

E(W) = Esing(sy) [(anq(aast) Q¢ (st,a1) —log g (as [ )] = Vi (st at))ﬂ -

« Training my:
Jx(0) = Es,~D [DKL (779 (- | se) || 2R ))ﬂ
J7T(9> — EstND,etNN [log o (f9 (et; St) | St) - Q¢ (Sta f@ (Et; St))] )

VoJ:(0) = Vglogmg (a; | s¢)
+ (Va, logmg (at | st) — Va,Q (st,at)) Vo fo (€r58¢)
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Applications of Control as Probabilistic Inference

Replacing Prior p(a;|s;)

Decision Choice 1: As we were not interested in action prior (online), we can take it as simplest:

plat) = plae|se) = |,4t|

«  What if we assume the prior as p(a;|s;) = mo14(as|St) O Tpenavior(@clSt) ?

J(7) = Brmr | S0 (sty00) + aM (7 (-] )]
« Max Entropy objective leads to KL regularized objective. TRPO/PPO/AWR....
T
J(7) = B |17 (51,00)| = 0Bomp, [Dicr (7(- | 8)1Tora (- | 5))]
« Trajectory planning. Diffuser

Modeling Entire trajectory distribution with offline dataset.

p(r|O1r) = p(r) exp (1, r(si, ar)
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Future Plan of Research

1. Constrained black-box optimization with posterior inference. (Taeyoung Yun, Kyuil Sim) ~NIPS(2025)

2. Probabilistic Inference for sequential decision making. (Diffusion meets control/Control meets diffusion)
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EOD
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